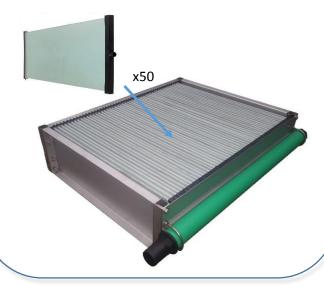
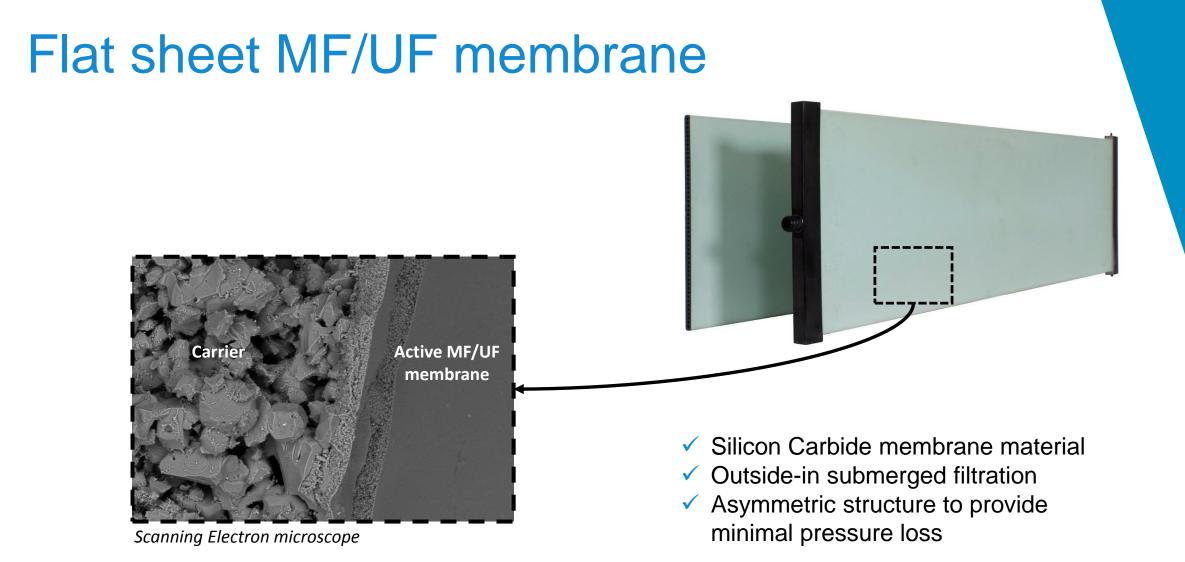
#### cembrane clean water for life

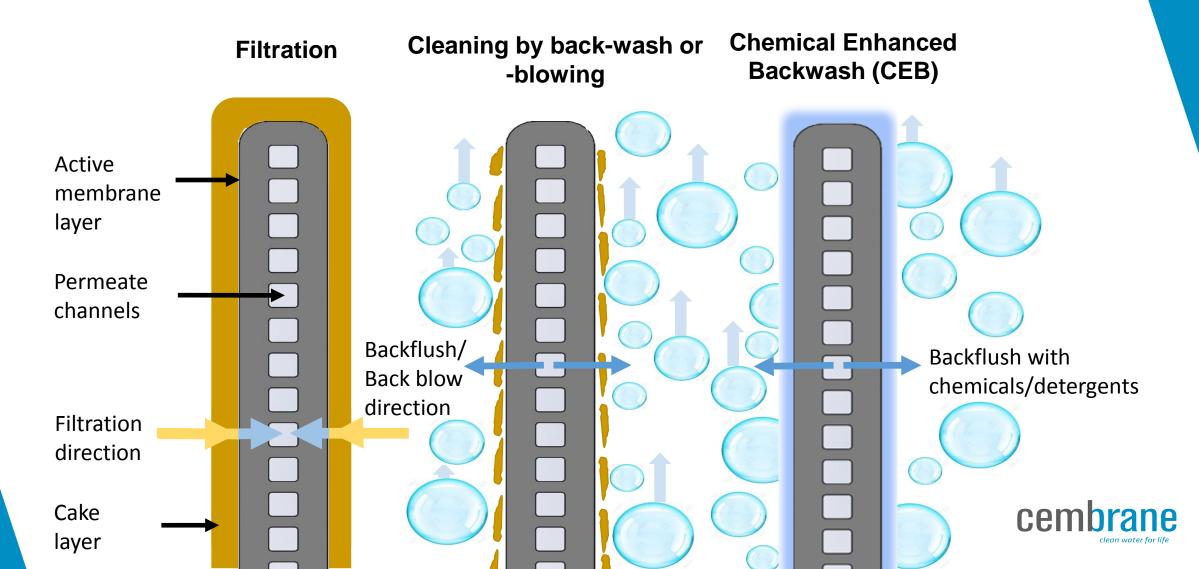

# New Generation Ceramic Membranes

# **Product scope**

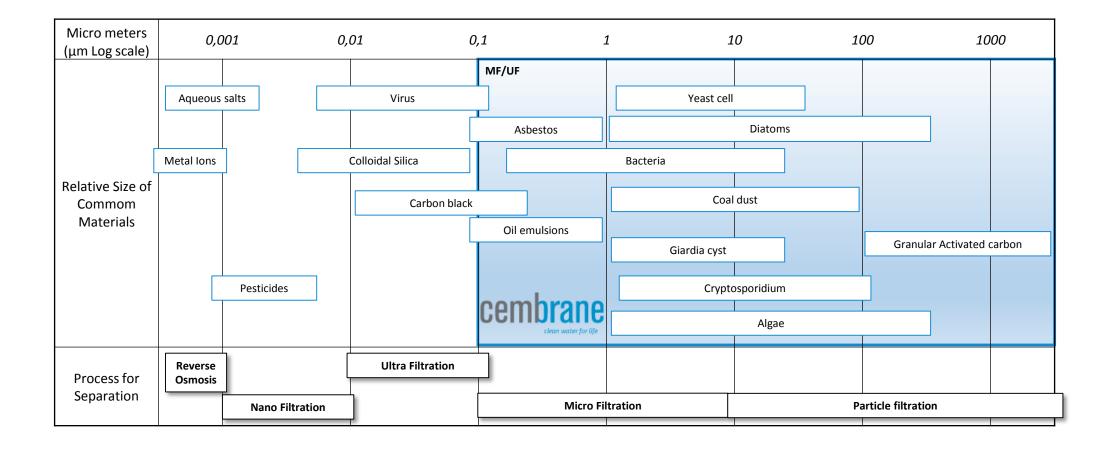

- ✓ Silicon Carbide Flat sheet
- ✓ Outside-in filtration
- Individual mounting
- ✓ High flux rate
- Minimal bio-fouling due to strong negative charge

- ✓ 7,25 m<sup>2</sup> module
- ✓ Submersible
- Highly compact
- High chemical and ozone resistance
- Easy to handle and install

- Stackable system
- Framing of air-bubbles for optimal flux
- Good shock absorption between modules






cembrane clean water for life

# Cross section of Flat sheet membrane during different operation modes




# Pore size and filtration spectrum





# **Evolution of filtration**



#### Polymer membranes

- Good permeate quality
- Low flux rate and robustness
- Low recovery rate
- Frequent cleanings
- Excessive use of chemicals
- Short lifetime (3-4 years)
- Not resistant to oil, temperature & harsh chemicals
- Maintenance is labour intensive



#### **NEW GENERATION CERAMIC MEMBRANE**

- Good permeate quality
- Long lifetime (>10 years)
- Unprecedented high flux rates
- High resistance towards chemicals & High pressure operation
- Resistant towards ozone
- Highest recovery rate
- Low operating and maintenance cost due to robustness and limited use of chemicals

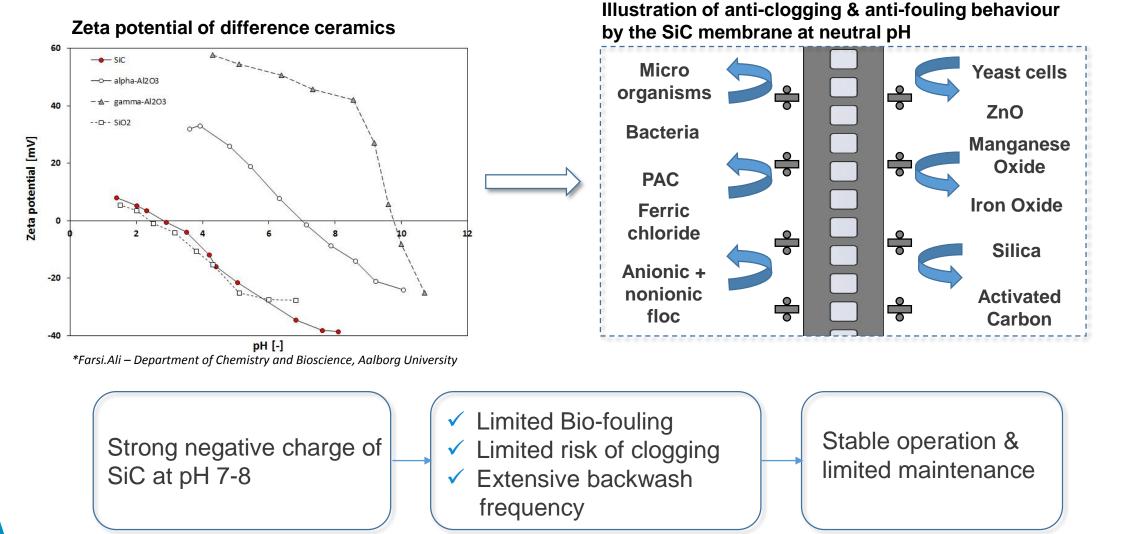
"Combining the robustness of a sandfilter, with the filtration quality of a polymeric membrane."



#### Sand filter

- Traditional method
- Robust solution
- Very low recovery rate
- Poor permeate quality
- High chemical demand during pre & post treatment due to poor permeate quality

## **Technical features**




# Unique Selling Points of SiC membranes

- Low fouling potential due to low Zeta potential (iso electric point at pH 2.7)
  - ✓ Longer operating cycles in waste water without backwashing/cleaning
  - Less cleaning efforts
  - Lower energy consumption
  - ✓ Less maintenance efforts
  - ✓ More stable operation
- Extremely high flux rates due to low contact angle to water
  - More compact plants
  - Less piping, instrumentation etc.
- Full chemical resistance (ph 1-14)
  - ✓ More flexibility in cleaning
  - Treatment of highly corrosive feed waters



## Zeta potential





### Flux rate

- Low contact angle between water and SiC
- Super hydrophilic surface
- Ultrathin membrane layer
- Asymmetric membrane structure between membrane and substrate
- High porosity substrate (50%)

- ✓ Highest flux rate for any ceramic membrane
- Low membrane surface area required
- ✓ High flow on small foot-print
- ✓ High recovery rate close to 100%
- ✓ Low pressure operation → low energy

| Average flux rate @ 25 °C    | Removal                                           | LMH     |
|------------------------------|---------------------------------------------------|---------|
| Ground water                 | Fe, Mn, Ra, As                                    | 600-800 |
| Sea Water Pre-RO open intake | Algae, TSS, Oil                                   | 250-300 |
| Surface water                | Micro organisms, TSS, Silt                        | 250     |
| MBR                          | TSS, Bacteria, COD, BOD                           | 45-60   |
| MBBR                         | TSS, Bacteria, COD, BOD                           | 150-200 |
| Treated sewage effluent      | TSS, Bacteria, COD, BOD                           | 200     |
| Sandfilter backwash water    | Coagulalents, TSS, Microorganisms, Bacteria, etc. | 350     |



# **Chemical resistance of Silicon Carbide**

Silicon Carbide is chemically inert & exhibit close to 0% weight loss in extreme conditions

- Membrane is stable in extreme feed conditions where no other membrane survives:
  - ✓ Solvents

✓ Ozone

✓ pH 1-12 constant exposure

Oxidizing agents

Enables highly effective cleanings

Long membrane life

| Test<br>environment*<br>Conc. reagent<br>(Wt%) | °C  | Temp.<br>° F | Si/SiC<br>composites<br>(12% Si) | Tungsten<br>carbide (6%<br>Co) | Aluminum<br>oxide<br>(99%) | Silicon carbide<br>(No free Si) |
|------------------------------------------------|-----|--------------|----------------------------------|--------------------------------|----------------------------|---------------------------------|
| 98% H₂SO₄                                      | 100 | 212          | 55.0                             | >1000                          | 65.0                       | 1.8                             |
| 50% NaOH                                       | 100 | 212          | >1000                            | 5.0                            | 75.0                       | 2.5                             |
| 53% HF                                         | 25  | 77           | 7.9                              | 8.0                            | 20.0                       | <0.2                            |
| 85% <b>H</b> ₃PO₄                              | 100 | 212          | 8.8                              | 55.0                           | >1000                      | <0.2                            |
| 70% HNO₃                                       | 100 | 212          | 0.5                              | >1000                          | 7.0                        | <0.2                            |
| 45% KOH                                        | 100 | 212          | >1000                            | 3.0                            | 60.0                       | <0.2                            |
| 25% HCI                                        | 70  | 158          | 0.9                              | 85.0                           | 72.0                       | <0.2                            |
| 10% HF plus                                    | 25  | 77           | >1000                            | >1000                          | 16.0                       | <0.2                            |
| 57% HNO₃                                       |     |              |                                  |                                |                            |                                 |

\*Test time: 125 to 300 hours of submersive testing, continuously stirred.

\*\* >1000 mg/cm yr - Completely destroyed within days.

\*\*\* 100 to 999 mg/cm2 yr - Not recommended for service greater than a month.

\*\*\*\* 50 to 100 mg/cm2 yr - Not recommended for service greater than one year.

\*\*\*\*\* 10 to 49 mg/cm2 yr - Caution recommended, based on the specific application. 0.3 to 9.9 mg/cm2 yr Recommended for long term service.

\*\*\*\*\* <.2 mg/cm2 yr - Recommended for long term service: no corrosion other than as a result of surface cleaning was evidenced.

